Novel electrochemical PMI marker biosensor based on quantum dot dissolution using a double-label strategy

SCIENTIFIC REPORTS(2022)

引用 2|浏览7
暂无评分
摘要
A novel and facile post-mortem interval (PMI) biosensor was fabricated using a double-label strategy to detect the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) biomarker. A monoclonal anti-GAPDH antibody was immobilized on a surface label containing cadmium selenide quantum dots (CdSe QDs) on a cysteamine graphene oxide (Cys-GO) self-assembled monolayer. Glucose oxidase (GOx) was used as a signal label to conjugate with GAPDH. GAPDH recognition was achieved through the dissolution of the surface-attached CdSe QDs by hydrogen peroxide generated through GAPDH-conjugated GOx-catalyzed β -glucose oxidation. To enhance sensitivity, a competitive interaction was introduced between free and conjugated GAPDH to the active site of the anti-GAPDH antibody. The electrochemical response due to CdSe dissolution decreased proportionally with the concentration of free GAPDH. Differential pulsed voltammetry was conducted to determine the analytical characteristics of the immunosensor, including the limit of detection, linear dynamic range, target selectivity, system stability, and applicability toward the analysis of real samples.
更多
查看译文
关键词
Analytical chemistry,Biomarkers,Electrochemistry,Sensors and probes,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要