Assessing the DNA Damaging Effectiveness of Ionizing Radiation Using Plasmid DNA

MEDICAL PHYSICS(2022)

引用 0|浏览0
暂无评分
摘要
Plasmid DNA is useful for investigating the DNA damaging effects of ionizing radiation. In this study, we have explored the feasibility of plasmid DNA-based detectors to assess the DNA damaging effectiveness of two radiotherapy X-ray beam qualities after undergoing return shipment of ~8000 km between two institutions. The detectors consisted of 18 μL of pBR322 DNA enclosed with an aluminum seal in nine cylindrical cavities drilled into polycarbonate blocks. We shipped them to Toronto, Canada for irradiation with either 100 kVp or 6 MV  X-ray beams to doses of 10, 20, and 30 Gy in triplicate before being shipped back to San Diego, USA. The Toronto return shipment also included non-irradiated controls and we kept a separate set of controls in San Diego. In San Diego, we quantified DNA single strand breaks (SSBs), double strand breaks (DSBs), and applied Nth and Fpg enzymes to quantify oxidized base damage. The rate of DSBs/Gy/plasmid was 2.8±0.7 greater for the 100 kVp than the 6 MV irradiation. The 100 kVp irradiation also resulted in 5±2 times more DSBs/SSB than the 6 MV beam, demonstrating that the detector is sensitive enough to quantify relative DNA damage effectiveness, even after shipment over thousands of kilometers.
更多
查看译文
关键词
DNA DSB damage,DNA-based detector,X-ray ionizing radiation,linear energy transfer,oxidized DNA base damage,relative biological effectiveness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要