An Integrated Approach for Failure Mode and Effects Analysis Based on Weight of Risk Factors and Fuzzy PROMETHEE II

SYMMETRY-BASEL(2022)

引用 2|浏览1
暂无评分
摘要
Design experts need to fully understand the failure risk of a product to improve its quality and reliability. However, design experts have different understandings of and concepts in the risk evaluation process, which will lead to cognitive asymmetry in the product's redesign. This phenomenon of cognitive asymmetry prevents experts from improving the reliability of a product, increasing the risk of product development failure. Traditionally, failure mode and effects analysis (FMEA) has been widely used to identify the failure risk in redesigning products and a system's process. The risk priority number (RPN), which is determined by the risk factors (RF), namely, the occurrence (O), severity (S), and detection (D), is the index used to determine the priority ranking of the failure modes (FM). However, the uncertainty about the evaluation information for the RF and the coupling relationship within the FM have not been taken into account jointly. This paper presents an integrated approach for FMEA based on an interval-valued intuitionistic fuzzy set (IVIFS), a fuzzy information entropy, a non-linear programming model, and fuzzy PROMETHEE II to solve the problem of cognitive asymmetry between experts in the risk evaluation process. The conclusions are as follows: Firstly, an IVIFS is used to present the experts' evaluation information of the RF with uncertainty, and the fuzzy information entropy is utilized to obtain the weight of the experts to integrate the collective decision matrix. Secondly, a simplified non-linear programming model is utilized to obtain the weight of the RF to derive the weighted preference index of the FM. Subsequently, the coupling relationship within the FM is estimated by fuzzy PROMETHEE II, where the net flow is given to estimate the priority ranking of the FM. Finally, the proposed approach is elaborated on using a real-world case of a liquid crystal display. Methods comparison and sensitivity analyses are conducted to demonstrate the validity and feasibility of the proposed approach.
更多
查看译文
关键词
failure mode and effects analysis, interval-valued intuitionistic fuzzy set, cognitive asymmetry, fuzzy PROMETHEE II, liquid crystal display
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要