Decreased synapse-associated proteins are associated with the onset of epileptic memory impairment in endothelial CDK5-deficient mice

MEDCOMM(2022)

引用 1|浏览7
暂无评分
摘要
Accumulating evidence indicates that epilepsy has a higher risk of inducing memory impairment and dementia. However, the underlying onset mechanism remains unclear. Here, we found that mice with spontaneous epilepsy induced by endothelial CDK5 deficiency exhibited hippocampal-dependent memory impairment at 6 months of age, but not at 2 months of age. Moreover, the persistent epileptic seizures induce aberrant changes in phosphorylation of CaMKII protein in the hippocampus of spontaneous epileptic mice. Using genome-wide RNA sequencing and intergenic interaction analysis of STRING, we found that in addition to epilepsy-related genes, there are changes in synaptic organization pathway node genes, such as Bdnf and Grin1. The synapse-related proteins by Western blot analysis, such as NMDA receptors (NR1 and NR2B), PSD95, and the phosphorylation of synapsin1, are progressively decreased during epileptic seizures in Cdh5-CreERT2;CDK5(f/f) mice. Notably, we found that valproate (VPA) and phenytoin (PHT) augment mRNA expression and protein levels of synapse-related genes and ameliorate memory impairment in Cdh5-CreERT2;CDK5(f/f) mice. Our study elucidates a potential mechanism of memory deficits in epilepsy, and pharmacological reversal of synaptic pathology targeting might provide a new therapeutic intervention for epileptic memory deficits.
更多
查看译文
关键词
endothelial CDK5, mechanism, memory impairment, spontaneous epilepsy, synapse-related proteins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要