Developing a new generation of integrated micro-spec far-infrared spectrometers for the experiment for cryogenic large-aperture intensity mapping (EXCLAIM)

Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave(2022)

引用 0|浏览25
暂无评分
摘要
The current state of far-infrared astronomy drives the need to develop compact, sensitive spectrometers for future space and ground-based instruments. Here we present details of the $\rm \mu$-Spec spectrometers currently in development for the far-infrared balloon mission EXCLAIM. The spectrometers are designed to cover the $\rm 555 - 714\ \mu$m range with a resolution of $\rm R\ =\ \lambda / \Delta\lambda\ =\ 512$ at the $\rm 638\ \mu$m band center. The spectrometer design incorporates a Rowland grating spectrometer implemented in a parallel plate waveguide on a low-loss single-crystal Si chip, employing Nb microstrip planar transmission lines and thin-film Al kinetic inductance detectors (KIDs). The EXCLAIM $\rm \mu$-Spec design is an advancement upon a successful $\rm R = 64\ \mu$-Spec prototype, and can be considered a sub-mm superconducting photonic integrated circuit (PIC) that combines spectral dispersion and detection. The design operates in a single $M{=}2$ grating order, allowing one spectrometer to cover the full EXCLAIM band without requiring a multi-order focal plane. The EXCLAIM instrument will fly six spectrometers, which are fabricated on a single 150 mm diameter Si wafer. Fabrication involves a flip-wafer-bonding process with patterning of the superconducting layers on both sides of the Si dielectric. The spectrometers are designed to operate at 100 mK, and will include 355 Al KID detectors targeting a goal of NEP ${\sim}8\times10^{-19}$ $\rm W/\sqrt{Hz}$. We summarize the design, fabrication, and ongoing development of these $\rm \mu$-Spec spectrometers for EXCLAIM.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要