Random projections for curves in high dimensions

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Modern time series analysis requires the ability to handle datasets that are inherently high-dimensional; examples include applications in climatology, where measurements from numerous sensors must be taken into account, or inventory tracking of large shops, where the dimension is defined by the number of tracked items. The standard way to mitigate computational issues arising from the high dimensionality of the data is by applying some dimension reduction technique that preserves the structural properties of the ambient space. The dissimilarity between two time series is often measured by ``discrete'' notions of distance, e.g. the dynamic time warping or the discrete Fr\'echet distance. Since all these distance functions are computed directly on the points of a time series, they are sensitive to different sampling rates or gaps. The continuous Fr\'echet distance offers a popular alternative which aims to alleviate this by taking into account all points on the polygonal curve obtained by linearly interpolating between any two consecutive points in a sequence. We study the ability of random projections \`a la Johnson and Lindenstrauss to preserve the continuous Fr\'echet distance of polygonal curves by effectively reducing the dimension. In particular, we show that one can reduce the dimension to $O(\epsilon^{-2} \log N)$, where $N$ is the total number of input points while preserving the continuous Fr\'echet distance between any two determined polygonal curves within a factor of $1\pm \epsilon$. We conclude with applications on clustering.
更多
查看译文
关键词
random projections,curves,high dimensions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要