Topology mediates transport of nanoparticles in macromolecular networks

NATURE COMMUNICATIONS(2022)

引用 14|浏览12
暂无评分
摘要
Diffusion transport of nanoparticles in confined environments of macromolecular networks is common in diverse physical systems and regulates many biological responses. Macromolecular networks possess various topologies, featured by different numbers of degrees and genera. Although the network topologies can be manipulated from a molecular level, how the topology impacts the transport of nanoparticles in macromolecular networks remains unexplored. Here, we develop theoretical approaches combined with simulations to study nanoparticle transport in a model system consisting of network cells with defined topologies. We find that the topology of network cells has a profound effect on the free energy landscape experienced by a nanoparticle in the network cells, exhibiting various scaling laws dictated by the topology. Furthermore, the examination of the impact of cell topology on the detailed behavior of nanoparticle dynamics leads to different dynamical regimes that go beyond the particulars regarding the local network loop. The results might alter the conventional picture of the physical origin of transport in networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要