Search for merger ejecta emission from late-time radio observations of short GRBs using GMRT

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2024)

引用 0|浏览4
暂无评分
摘要
In some cases, the merger of two neutron stars can produce a rapidly rotating and highly magnetized millisecond magnetar. A significant proportion of the rotational energy deposited to the emerging ejecta can produce a late-time radio brightening from interacting with the ambient medium. Detection of this late-time radio emission from short GRBs can have profound implications for understanding the physics of the progenitor. We report the radio observations of five short GRBs - 050709, 061210, 100625A, 140903A, and 160821B using the legacy Giant Metrewave Radio Telescope (GMRT) at 1250, 610, and 325 MHz frequencies and the upgraded-GMRT (uGMRT) at band 5 (1050-1450 MHz) and band 4 (550-900 MHz) after similar to 2-11 yr from the time of the burst. The GMRT observations at low frequencies are particularly important to detect the signature of merger ejecta emission at the peak. These observations are the most delayed searches associated with some GRBs for any late-time low-frequency emission. We find no evidence for such an emission. We find that none of these GRBs is consistent with maximally rotating magnetar with a rotational energy of similar to 1053 erg. However, magnetars with lower rotational energies cannot be completely ruled out. Despite the non-detection, our study underscores the power of radio observations in the search for magnetar signatures associated with short GRBs. However, only future radio observatories may be able to detect these signatures or put more stringent constraints on the model.
更多
查看译文
关键词
gravitational waves,surveys,stars: magnetars,stars: neutron,gamma-ray bursts,neutron star mergers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要