Left frontal eye field encodes sound locations during passive listening

CEREBRAL CORTEX(2022)

引用 1|浏览14
暂无评分
摘要
Previous studies reported that auditory cortices (AC) were mostly activated by sounds coming from the contralateral hemifield. As a result, sound locations could be encoded by integrating opposite activations from both sides of AC ("opponent hemifield coding"). However, human auditory "where" pathway also includes a series of parietal and prefrontal regions. It was unknown how sound locations were represented in those high-level regions during passive listening. Here, we investigated the neural representation of sound locations in high-level regions by voxel-level tuning analysis, regions-of-interest-level (ROI-level) laterality analysis, and ROI-level multivariate pattern analysis. Functional magnetic resonance imaging data were collected while participants listened passively to sounds from various horizontal locations. We found that opponent hemifield coding of sound locations not only existed in AC, but also spanned over intraparietal sulcus, superior parietal lobule, and frontal eye field (FEF). Furthermore, multivariate pattern representation of sound locations in both hemifields could be observed in left AC, right AC, and left FEF. Overall, our results demonstrate that left FEF, a high-level region along the auditory "where" pathway, encodes sound locations during passive listening in two ways: a univariate opponent hemifield activation representation and a multivariate full-field activation pattern representation.
更多
查看译文
关键词
fMRI,frontal eye field,sound localization,multivariate pattern analysis,opponent coding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要