Insights into the different mixing states and formation processes of amine-containing single particles in Guangzhou, China

Science of The Total Environment(2022)

引用 4|浏览10
暂无评分
摘要
The formation processes of particulate amines are closely related to their emission sources and secondary reactions, which can be revealed through the investigation of their real-time mixing states in individual particles. The mixing states of methylamine (MA)-, trimethylamine (TMA)-, and diethylamine (DEA)-containing particles were studied using a high-performance single particle aerosol mass spectrometer (HP-SPAMS) in Guangzhou, China, in January 2020. The sharp increase in TMA particles was found to be closely associated with the increase in the ambient relative humidity (RH), while the MA- and DEA-containing particles were not similarly influenced by the changes in the RH. The prominent enrichment of secondary oxygenated organics in DEA particles during the daytime was consistent with the active period of photochemistry, implying that the sharp decrease in DEA particles in the afternoon was likely due to photo-oxidation of the DEA. The number fraction (Nf) of DEA particles, the Nf of the nitrate in the DEA particles, and the abundance of nitrate increased as the NOx content all increased during the nighttime, suggesting that the formation of DEA·HNO3 salt was the dominant pathway of particulate DEA production. These results are consistent with our previous measurements in Nanjing, confirming the general and distinct mixing states of TMA and DEA particles. Positive matrix factorization analysis revealed that the total fraction of the more oxidized organics factor and the less oxidized organics factor were much higher in the DEA particles (26.9 %) than in the TMA particles (9 %), confirming the significant enrichment of oxygenated species in the DEA particles. The different mixing states of the amines revealed the unique response of each type of amine to the same atmospheric environment, and the prominent mixing states of the DEA with secondary oxygenated species suggest the potential role of DEA in tracing the evolution of organic aerosols.
更多
查看译文
关键词
Amines,Mixing states,Organic aerosols,Single particles,Nighttime chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要