African swine fever virus M1249L protein antagonizes type I interferon production via suppressing phosphorylation of TBK1 and degrading IRF3

Virus Research(2022)

引用 9|浏览13
暂无评分
摘要
Cyclic GMP-AMP synthase (cGAS) is a major DNA sensor. The recognition of cytosolic DNA by cGAS triggers a robust innate immune response that restricts the replication of diverse viral pathogens through the type I interferon (IFN) and nuclear factor-κB (NF-κB) pathways. African swine fever virus (ASFV) is a large and complex DNA virus reported to strongly inhibit the cGAS-STING signaling pathway. Herein, 12 ASFV structural proteins were screened to determine their effects on the cGAS-STING pathway. Ectopic expression of the ASFV caspid protein M1249L significantly inhibited the IFN-β promoter activity induced by the cGAS-STING pathway in a dose-dependent manner. And it could also downregulate the levels of IFN-β and several interferon-stimulating genes (ISGs) induced by cGAS-STING and 2’3’-cGAMP. Moreover, ASFV M1249L also suppressed phosphorylation of TBK1 by cGAS and STING overexpression. Further study showed that M1249L co-localized and interacted with interferon regulatory factor 3 (IRF3), which led to induce IRF3 degradation by lysosomal pathway. Taken together, our study revealed a novel strategy utilized by ASFV for cGAS-STING-related immune evasion.
更多
查看译文
关键词
African swine fever virus,M1249L,Innate immunity,TBK1,IRF3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要