A Large-Scale Empirical Analysis of the Vulnerabilities Introduced by Third-party Components in IoT Firmware

ISSTA 2022: Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis(2022)

引用 14|浏览90
暂无评分
摘要
As the core of IoT devices, firmware is undoubtedly vital. Currently, the development of IoT firmware heavily depends on third-party components (TPCs), which significantly improves the development efficiency and reduces the cost. Nevertheless, TPCs are not secure, and the vulnerabilities in TPCs will turn back influence the security of IoT firmware. Currently, existing works pay less attention to the vulnerabilities caused by TPCs, and we still lack a comprehensive understanding of the security impact of TPC vulnerability against firmware. To fill in the knowledge gap, we design and implement FirmSec, which leverages syntactical features and control-flow graph features to detect the TPCs at version-level in firmware, and then recognizes the corresponding vulnerabilities. Based on FirmSec, we present the first large-scale analysis of the usage of TPCs and the corresponding vulnerabilities in firmware. More specifically, we perform an analysis on 34,136 firmware images, including 11,086 publicly accessible firmware images, and 23,050 private firmware images from TSmart. We successfully detect 584 TPCs and identify 128,757 vulnerabilities caused by 429 CVEs. Our in-depth analysis reveals the diversity of security issues for different kinds of firmware from various vendors, and discovers some well-known vulnerabilities are still deeply rooted in many firmware images. We also find that the TPCs used in firmware have fallen behind by five years on average. Besides, we explore the geographical distribution of vulnerable devices, and confirm the security situation of devices in several regions, e.g., South Korea and China, is more severe than in other regions. Further analysis shows 2,478 commercial firmware images have potentially violated GPL/AGPL licensing terms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要