Stress Distribution Pattern in Zygomatic Implants Supporting Different Superstructure Materials

MATERIALS(2022)

引用 10|浏览5
暂无评分
摘要
The aim of this study was to assess and compare the stress-strain pattern of zygomatic dental implants supporting different superstructures using 3D finite element analysis (FEA). A model of a tridimensional edentulous maxilla with four dental implants was designed using the computer-aided design (CAD) software. Two standard and two zygomatic implants were positioned to support the U-shaped bar superstructure. In the computer-aided engineering (CAE) software, different materials have been simulated for the superstructure: cobalt-chrome (CoCr) alloy, titanium alloy (Ti), zirconia (Zr), carbon-fiber polymers (CF) and polyetheretherketone (PEEK). An axial load of 500 N was applied in the posterior regions near the zygomatic implants. Considering the mechanical response of the bone tissue, all superstructure materials resulted in homogeneous strain and thus could reconstruct the edentulous maxilla. However, with the aim to reduce the stress in the zygomatic implants and prosthetic screws, stiffer materials, such Zr, CoCr and Ti, appeared to be a preferable option.
更多
查看译文
关键词
dental implants, finite element analysis, dental materials, materials, prosthodontics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要