A ghost-point smoothing strategy for geometric multigrid on curved boundaries

arxiv(2022)

引用 0|浏览3
暂无评分
摘要
We present a Boundary Local Fourier Analysis (BLFA) to optimize the relaxation parameters of boundary conditions in a multigrid framework. The method is implemented to solve elliptic equations on curved domains embedded in a uniform Cartesian mesh, although it is designed to be extended for general PDEs in curved domains, wherever a multigrid technique can be implemented. The boundary is implicitly defined by a level-set function and a ghost-point technique is employed to treat the boundary conditions. Existing strategies in literature adopt a constant relaxation parameter on the whole boundary. In this paper, the relaxation parameters are optimized in terms of the distance between ghost points and boundary, with the goal of smoothing the residual along the tangential direction. Theoretical results are confirmed by several numerical tests in 1D, 2D and 3D, showing that the convergence factor associated with the smoothing on internal equations is not degraded by boundary effects.
更多
查看译文
关键词
Ghost-point,Multigrid,Local Fourier analysis,Curved boundary,Elliptic problems,Immersed boundary method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要