Wind tunnel experimental calibration of hemispherical 7-hole probe pressure–velocity parametric equation

SCIENTIFIC REPORTS(2022)

引用 3|浏览3
暂无评分
摘要
The multi-hole probe can measure the velocity and three-dimensional direction of the flow field at the same time, so it is often used to measure the three-dimensional flow field. Compared with other flow field measuring instruments, the multi-hole probe has stronger environmental adaptability and stability, and can better measure the three-dimensional flow field of the middle atmosphere. Therefore, a hemispherical 7-hole probe was designed, a pressure–velocity parameterized equation was established based on the theory of flow around a sphere, and a new calibration method was developed based on this. The calibration is carried out in a subsonic low speed wind tunnel, multiple combinations of flow parameters (inflow velocity and flow angles) are adjusted during the calibration. The results are compared with the numerical simulation results, both are quite close, with a speed measurement deviation of less than 5% and an angle measurement deviation of less than 1°. Our results establish the practicality of the hemispherical 7-hole probe and the simplified calibration procedure, both of which improve calibration efficiency and lower probe calibration costs.
更多
查看译文
关键词
Fluid dynamics,Techniques and instrumentation,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要