谷歌浏览器插件
订阅小程序
在清言上使用

Uneven Index: A Digital Biomarker to Prompt Demodex Blepharitis Based on Deep Learning

FRONTIERS IN PHYSIOLOGY(2022)

引用 2|浏览21
暂无评分
摘要
Purpose: To evaluate ocular surface manifestations and morphological changes in meibomian glands (MGs) based on artificial intelligence (AI) analysis in patients with Demodex blepharitis. Methods: In this retrospective study, 115 subjects were enrolled, including 64 subjects with Demodex blepharitis and 51 subjects without Demodex blepharitis as control group. Morphological indexes were evaluated for height, width, tortuosity, MG density, total variation, and the three types of corrected total variation as Uneven indexes. Results: There were no statistically significant differences in all MGs' average tortuosity and width between the two groups. The average height of all MGs and MG density were significantly lower in the Demodex blepharitis group than control group. The total variation and two types of Uneven indexes were significantly higher in the Demodex blepharitis group than in the control group. Especially the Uneven Index of total variation/MG density had an AUC of 0.822. And the sensitivity and specificity were 59.4% and 92.2%, respectively, at a cut-off value of 3971.667. In addition, Demodex blepharitis was associated with significantly lower meibum quality and expressibility, severe atrophy of MGs, a higher ocular surface disease index (OSDI), and more instability of the tear film. Conclusion: Demodex mites are strongly associated with morphological changes in the MGs and may cause uneven gland atrophy. Therefore, the novel characteristic parameter, the Uneven index, may serve as a digital biomarker to evaluate uneven atrophy of MGs and prompt Demodex blepharitis.
更多
查看译文
关键词
artificial intelligence,Demodex blepharitis,digital biomarker,total variation,uneven atrophy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要