A potent tumor-selective ERK pathway inactivator with high therapeutic index.

PNAS nexus(2022)

引用 1|浏览12
暂无评分
摘要
FDA-approved BRAF and MEK small molecule inhibitors have demonstrated some level of efficacy in patients with metastatic melanomas. However, these "targeted" therapeutics have a very low therapeutic index, since these agents affect normal cells, causing undesirable, even fatal, side effects. To address these significant drawbacks, here, we have reengineered the anthrax toxin-based protein delivery system to develop a potent, tumor-selective MEK inactivator. This toxin-based MEK inactivator exhibits potent activity against a wide range of solid tumors, with the highest activity seen when directed toward tumors containing the BRAFV600E mutation. We demonstrate that this reengineered MEK inactivator also exhibits an extremely high therapeutic index (>15), due to its in vitro and in vivo activity being strictly dependent on the expression of multiple tumor-associated factors including tumor-associated proteases matrix metalloproteinase, urokinase plasminogen activator, and anthrax toxin receptor capillary morphogenesis protein-2. Furthermore, we have improved the specificity of this MEK inactivator, restricting its enzymatic activity to only target the ERK pathway, thereby greatly diminishing off-target toxicity. Together, these data suggest that engineered bacterial toxins can be modified to have significant in vitro and in vivo therapeutic effects with high therapeutic index.
更多
查看译文
关键词
CMG2,ERK signaling,anthrax lethal toxin,intermolecular complementation,tumor targeting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要