GANs for Generation of Synthetic Ultrasound Images from Small Datasets
Current Directions in Biomedical Engineering(2022)
Institute of Medical Technology and Intelligent Systems
Abstract
The task of medical image classification is increasingly supported by algorithms. Deep learning methods like convolutional neural networks (CNNs) show superior performance in medical image analysis but need a high-quality training dataset with a large number of annotated samples. Particularly in the medical domain, the availability of such datasets is rare due to data privacy or the lack of data sharing practices among institutes. Generative adversarial networks (GANs) are able to generate high quality synthetic images. This work investigates the capabilities of different state-of-the-art GAN architectures in generating realistic breast ultrasound images if only a small amount of training data is available. In a second step, these synthetic images are used to augment the real ultrasound image dataset utilized for training CNNs. The training of both GANs and CNNs is conducted with systematically reduced dataset sizes. The GAN architectures are capable of generating realistic ultrasound images. GANs using data augmentation techniques outperform the baseline Style- GAN2 with respect to the Frechet Inception distance by up to 64.2%. CNN models trained with additional synthetic data outperform the baseline CNN model using only real data for training by up to 15.3% with respect to the F1 score, especially for datasets containing less than 100 images. As a conclusion, GANs can successfully be used to generate synthetic ultrasound images of high quality and diversity, improve classification performance of CNNs and thus provide a benefit to computer-aided diagnostics.
MoreTranslated text
Key words
deep learning,medical image analysis,image classification,ultrasound imaging,generative adversarial networks (gans),synthetic image generation,small datasets
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest