Magnitude, direction, and drivers of rhizosphere effect on soil nitrogen and phosphorus in global agroecosystem

International Soil and Water Conservation Research(2022)

引用 5|浏览8
暂无评分
摘要
The rhizosphere is the most active soil area for material transformation and energy flow of soil, root, and microorganism, which plays an important role in soil biochemical cycling. Although the rhizospheric nitrogen (N) and phosphorous (P) were easily disturbed in the agroecosystem, the effects of rhizosphere on the dynamics of soil N and P cycling have not yet been systematically quantified globally. We summarized the magnitude, direction, and driving forces of rhizosphere effects on agroecosystem's N and P dynamics by 1063 observations and 15 variables from 122 literature. Rhizosphere effects increased available N (AN, 9%), available P (AP, 11%), and total P (TP, 5%), and decreased nitrate N (NO3–N, 18%) and ammonia N (NH4–N, 16%). The effect of rhizosphere on total N (TN) was not significant. These effects improved AN in tropical (12%) and subtropical (14%) regions. The effect of rhizosphere on TP was greater under subtropical conditions than in other climates. The most substantial effects of the rhizosphere on TP and AP were observed under humid conditions. Rhizosphere effects increased AN and AP in vegetables more than in other crop systems. Application of N > 300 kg ha−1 had the most significant and positive rhizosphere effects on TN and AN. P application of 100–150 kg ha−1 had the greatest rhizosphere effects on TP and AP. These effects also improved the microbial (biomass N and P) and enzymatic aspects (urease, acid phosphatase, and alkaline phosphatase) of soil P and N cycling. Structural equation modeling suggested that aridity indices, fertilizer application rate, soil pH, microbial biomass, and soil enzymes strongly influence the magnitude and direction of the rhizosphere's effect on the P and N cycles. Overall, these findings are critical for improving soil nutrient utilization efficiency and modeling nutrient cycling in the rhizosphere for agricultural systems.
更多
查看译文
关键词
Rhizosphere effect,Agriculture systems,Nitrogen cycling,Phosphorus cycling,Climate,Microbial biomass,Soil enzymes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要