谷歌浏览器插件
订阅小程序
在清言上使用

Few Shot Object Detection for SAR Images via Feature Enhancement and Dynamic Relationship Modeling

Remote Sensing(2022)

引用 5|浏览11
暂无评分
摘要
Current Synthetic Aperture Radar (SAR) image object detection methods require huge amounts of annotated data and can only detect the categories that appears in the training set. Due to the lack of training samples in the real applications, the performance decreases sharply on rare categories, which largely inhibits the detection model from reaching robustness. To tackle this problem, a novel few-shot SAR object detection framework is proposed, which is built upon the meta-learning architecture and aims at detecting objects of unseen classes given only a few annotated examples. Observing the quality of support features determines the performance of the few-shot object detection task, we propose an attention mechanism to highlight class-specific features while softening the irrelevant background information. Considering the variation between different support images, we also employ a support-guided module to enhance query features, thus generating high-qualified proposals more relevant to support images. To further exploit the relevance between support and query images, which is ignored in single class representation, a dynamic relationship learning paradigm is designed via constructing a graph convolutional network and imposing orthogonality constraint in hidden feature space, which both make features from the same category more closer and those from different classes more separable. Comprehensive experiments have been completed on the self-constructed SAR multi-class object detection dataset, which demonstrate the effectiveness of our few-shot object detection framework in learning more generalized features to both enhance the performance on novel classes and maintain the performance on base classes.
更多
查看译文
关键词
Synthetic Aperture Radar (SAR),few-shot object detection,attention,support-guided module,graph convolutional network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要