Physics-based deep learning for modeling nonlinear pulse propagation in optical fibers

OPTICS LETTERS(2022)

引用 9|浏览7
暂无评分
摘要
A physics-based deep learning (DL) method termed Phynet is proposed for modeling the nonlinear pulse propagation in optical fibers totally independent of the ground truth. The presented Phynet is a combination of a handcrafted neural network and the nonlinear Schrodinger physics model. In particular, Phynet is optimized through physics loss generated by the interaction between the network and the physical model rather than the supervised loss. The inverse pulse propagation problem is leveraged to exemplify the performance of Phynet when in comparison to the typical DI method under the same structure and datasets. The results demonstrate that Phynet is able to precisely restore the initial pulse profiles with varied initial widths and powers, while revealing a similar prediction accuracy compared with the typical DL method. The proposed Phynet method can be expected to break the severe bottleneck of the traditional DL method in terms of relying on abundant labeled data during the training phase, which thus brings new insight for modeling and predicting the nonlinear dynamics of the fibers. (C) 2022 Optica Publishing Group
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要