谷歌浏览器插件
订阅小程序
在清言上使用

Magnetic field driven dynamics in twisted bilayer artificial spin ice at superlattice angles

Rehana Begum Popy, Julia Frank,Robert L. Stamps

JOURNAL OF APPLIED PHYSICS(2022)

引用 1|浏览8
暂无评分
摘要
Geometrical designs of interacting nanomagnets have been studied extensively in the form of two-dimensional arrays called artificial spin ice. These systems are usually designed to create geometrical frustration and are of interest for the unusual and often surprising phenomena that can emerge. Advanced lithographic and element growth techniques have enabled the realization of complex designs that can involve elements arranged in three dimensions. Using numerical simulations employing the dumbbell approximation, we examine possible magnetic behaviors for bilayer artificial spin ice, in which the individual layers are rotated with respect to one another. The goal is to understand how magnetization dynamics are affected by long-range dipolar coupling that can be modified by varying the layer separation and layer alignment through rotation. We consider bilayers where the layers are both either square or pinwheel arrangements of islands. Magnetic reversal processes are studied and discussed in terms of domain and domain wall configurations of the magnetic islands. Unusual magnetic ordering is predicted for special angles that define lateral spin superlattices for the bilayer systems. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要