谷歌浏览器插件
订阅小程序
在清言上使用

Towards an Extension of Equivalent System Mass for Human Exploration Missions on Mars.

NPJ microgravity(2022)

引用 2|浏览9
暂无评分
摘要
NASA mission systems proposals are often compared using an equivalent system mass (ESM) framework, wherein all elements of a technology to deliver an effect-its components, operations, and logistics of delivery-are converted to effective masses, which has a known cost scale in space operations. To date, ESM methods and the tools for system comparison largely fail to consider complexities stemming from multiple transit and operations stages, such as would be required to support a crewed mission to Mars, and thus do not account for different mass equivalency factors during each period and the inter-dependencies of the costs across the mission segments. Further, ESM does not account well for the differential reliabilities of the underlying technologies. The uncertainty in the performance of technology should incur an equivalent mass penalty for technology options that might otherwise provide a mass advantage. Here we draw attention to the importance of addressing these limitations and formulate the basis of an extension of ESM that allows for a direct method for analyzing, optimizing, and comparing different mission systems. We outline a preliminary example of applying extended ESM (xESM) through a techno-economic calculation of crop-production technologies as an illustrative case for developing offworld biomanufacturing systems.
更多
查看译文
关键词
Aerospace engineering,Biomedical engineering,Life Sciences,general,Classical and Continuum Physics,Biotechnology,Immunology,Space Sciences (including Extraterrestrial Physics,Space Exploration and Astronautics),Applied Microbiology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要