谷歌浏览器插件
订阅小程序
在清言上使用

A General Synthesis of Single Atom Catalysts with Controllable Atomic and Mesoporous Structures

Nature synthesis(2022)

引用 42|浏览3
暂无评分
摘要
The control of single metal atomic sites has been extensively studied in the field of single atom catalysts. By contrast, the precise control of the mesoporous structure in the matrix material, which directly correlates with mass diffusions and may play a dominant role in delivering industrially relevant reaction rates, has been overlooked. Here we report a general method for the synthesis of a single atom catalyst with control of the atomic structure of the single atomic site as well as the mesoporous structure of the carbon support for optimized catalytic performance. Various combinations of metal centres (Ni, Co, Mn, Zn, Cu, Sc and Fe) and mass diffusion channels in two dimensions and three dimensions were achieved. Using CO2 reduction to CO as an example, our Ni single atom catalyst with three-dimensional diffusion channels delivered a practical current of 350 mA cm−2 while maintaining a 93% CO Faradaic efficiency, representing a sixfold improvement in turnover frequency compared to two-dimensional counterparts. The performance of single atom catalysts (SACs) is controlled by the metal single atom sites, but the role of the matrix material is less understood. Now, a hard-template synthesis is reported, enabling control of the atomic and mesoporous structures of SACs and the probing of matrix materials with either 2D or 3D diffusion channels.
更多
查看译文
关键词
Catalyst synthesis,Electrocatalysis,Chemistry/Food Science,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要