Characterization, reactivity, source apportionment, and potential source areas of ambient volatile organic compounds in a typical tropical city

Journal of Environmental Sciences(2023)

引用 2|浏览2
暂无评分
摘要
Based on one-year observation, the concentration, sources, and potential source areas of volatile organic compounds (VOCs) were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haikou, China. The results showed that the annual average concentration of total VOCs (TVOCs) was 11.4 ppbV, and the composition was dominated by alkanes (8.2 ppbV, 71.4%) and alkenes (1.3 ppbV, 20.5%). The diurnal variation in the concentration of dominant VOC species showed a distinct bimodal distribution with peaks in the morning and evening. The greatest contribution to ozone formation potential (OFP) was made by alkenes (51.6%), followed by alkanes (27.2%). The concentrations of VOCs and nitrogen dioxide (NO2) in spring and summer were low, and it was difficult to generate high ozone (O3) concentrations through photochemical reactions. The significant increase in O3 concentrations in autumn and winter was mainly related to the transmission of pollutants from the northeast. Traffic sources (40.1%), industrial sources (19.4%), combustion sources (18.6%), solvent usage sources (15.5%) and plant sources (6.4%) were identified as major sources of VOCs through the positive matrix factorization (PMF) model. The southeastern coastal areas of China were identified as major potential source areas of VOCs through the potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models. Overall, the concentration of ambient VOCs in Haikou was strongly influenced by traffic sources and long-distance transport, and the control of VOCs emitted from vehicles should be strengthened to reduce the active species of ambient VOCs in Haikou, thereby reducing the generation of O3.
更多
查看译文
关键词
Volatile organic compounds (VOCs),Ozone,Positive matrix factorization (PMF) model,Backward trajectory,Potential source area
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要