Di-n-butyl phthalate regulates vascular smooth muscle cells phenotypic switching by MiR-139-5p-MYOCD pathways.

Toxicology(2022)

引用 6|浏览9
暂无评分
摘要
Di-n-butyl phthalate (DBP) is ubiquitous in environment and has been detected in almost all human bodies. Few data could be found about the effects of DBP on cardiovascular system, though its reproductive toxicities have been studied extensively. This study aimed to explore effects of DBP on phenotypic switching of vascular smooth muscle cells (VSMCs), an essential step during the formation of atherosclerosis (AS). A7r5 cells were employed and exposed to various levels of DBP (10-9, 10-8, 10-7, 10-6, and 10-5 M) or DMSO as control. CCK-8 assay was used to detect the effects of DBP on cell viability. Expressions of mRNA/miRNAs and proteins were measured by qRT-PCR and western blotting, respectively. Bioinformatic analysis and dual-luciferase reporter assay were used to analyze the combination between miR-139-5p and Myocardin (MYOCD). Results revealed that DBP at 10-7 M prompted phenotypic switching from contractile to synthetic of VSMCs by inhibiting contractile VSMCs marker genes via suppressing the expression of MYOCD. Moreover, miR-139c-5p directly targeted MYOCD 3'UTR and modulated MYOCD expression. Besides, DBP inhibited the expression of MYOCD and VSMCs marker genes by upregulating miR-139-5p. Collectively, these data suggested that DBP could promote the phenotypic switching from contractile to synthetic of VSMCs in A7r5 cells through miR-139-5p-MYOCD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要