Epithelial JAM-A is fundamental for intestinal wound repair in-vivo.

JCI insight(2022)

引用 1|浏览11
暂无评分
摘要
Junctional adhesion molecule-A (JAM-A) is expressed in several cell types including epithelial and endothelial cells as well as some leukocytes. In intestinal epithelial cells (IEC), JAM-A localizes to cell junctions and plays a role in regulating barrier function. In vitro studies with model cell lines have shown that JAM-A contributes to IEC migration, however in vivo studies investigating the role of JAM-A in cell migration-dependent processes such as mucosal wound repair have not been performed. In this study, we developed an inducible intestinal epithelial-specific JAM-A knockdown mouse model (Jam-aER-ΔIEC). While acute induction of IEC-specific loss of JAM-A did not result in spontaneous colitis, such mice had significantly impaired mucosal healing after chemically induced colitis and after biopsy colonic wounding. In vitro primary cultures of JAM-A deficient IEC demonstrated impaired migration in wound healing assays. Mechanistic studies revealed that JAM-A stabilizes formation of protein signaling complexes containing Rap1A/Talin/β1-integrin at focal adhesions of migrating IECs. Loss of JAM-A in primary IEC led to decreased Rap1A activity and protein levels of Talin and β1-integrin and a reduction in focal adhesion structures. These findings suggest that epithelial JAM-A plays a critical role in controlling mucosal repair in vivo through dynamic regulation of focal adhesions.
更多
查看译文
关键词
Cell Biology,Gastroenterology,Inflammatory bowel disease
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要