Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects

arxiv(2022)

引用 0|浏览17
暂无评分
摘要
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous, a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要