Spatiotemporal Variations in Drought and Vegetation Response in Inner Mongolia from 1982 to 2019

REMOTE SENSING(2022)

引用 8|浏览5
暂无评分
摘要
Drought events cause ecological problems, including reduced water resources and degraded vegetation. Quantifying vegetation responses to drought is essential for ecological management. However, in existing research, the response relationships (correlations and lags) were typically determined based on Pearson correlation coefficient and the resultant lag times were constrained by the spatial and temporal resolutions of the analyzed data. Inner Mongolia is an important ecological barrier in northern China. Ecological security is one of the most concerned issues of the region's sustainable development. Herein, we combined Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI3g) with Systeme Probatoire d'Observation de la Terra-vegetation (SPOT-VGT) NDVI data through spatial downscaling. The obtained 1 km-resolution NDVI dataset spanning Inner Mongolia from 1982 to 2019 was used to represent the refined vegetation distribution. The standardized precipitation evapotranspiration index (SPEI) derived from gridded meteorological data was used to measure drought over the same period. We investigated the spatiotemporal characteristics of vegetation and drought in the region in the past 38 years. We then discussed changes in different vegetation responses to drought across eastern Inner Mongolia using cross wavelet transform (XWT) and wavelet coherence (WTC). The results reveal that in 82.4% of the study area, NDVI exhibited rising trends, and the SPEI values exhibited declining trends in 78.5% of the area. In eastern Inner Mongolia, the grassland NDVI was positively correlated with SPEI and significantly affected by drought events, while NDVI in forestlands, including shrubs, broad-leaved forests, and coniferous forests, was negatively correlated with SPEI in the short term and weakly affected by drought. The NDVI lag times behind SPEI in grasslands, coniferous forests, and broad-leaved forests were 1-1.5, 4.5, and 7-7.5 months, respectively. These findings provide a scientific foundation for environmental preservation in the region.
更多
查看译文
关键词
NDVI, SPEI, drought, spatiotemporal characteristics, response relationships
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要