Development of a multi-purpose SDR payload for the HYPSO-2 satellite

2022 IEEE Aerospace Conference (AERO)(2022)

引用 1|浏览4
暂无评分
摘要
Recent developments in flexible Software Defined Radio (SDR) platforms provide researchers with a framework for small satellite missions that combine several parallel objectives. A part of the mission for the HYPer-spectral Smallsat for ocean Observation (HYPSO-2) satellite from the Norwegian University of Science and Technology (NTNU) is to provide a responsive and agile service to the users where the on-board application software can be updated in flight. The radio-oriented part of the mission objectives spans radio frequency interference measurements and channel characterization in the selected frequency band — 400 MHz UHF – as well as a demonstration of communication services between the satellite and terrestrial sensor nodes and robotic agents. Energy-constrained sensor nodes in remote areas, such as the Arctic, is one of the application scenarios that would benefit from a tailored communication service. Even with services from emerging mega-constellations, traditional satellite communication systems, and new Internet of Things (IoT) over satellite services, there is a service gap for long-range-long-endurance robotic agents and Arctic sensor networks. Therefore, a better understanding of the radio frequency environment, including in-orbit interference as well as channel characteristics, can aid the design of responsive and robust communication links connecting individual assets of a larger System-of-Systems. Instead of just focusing on average spectrum interference levels, the frequency monitoring software enables the estimation of the interference dispersion and temporal variability. The HYPSO-2 is an evolution of the HYPSO-1 satellite, thus leveraging an already implemented mission software framework. Parts of the SDR payload have been tested on-board another satellite, and the in-orbit results from those measurements will be used as input for the next generation of the radio interference application.
更多
查看译文
关键词
satellite,multi-purpose
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要