谷歌浏览器插件
订阅小程序
在清言上使用

Salt stress-induced changes in soil metabolites promote cadmium transport into wheat tissues

Journal of Environmental Sciences(2023)

引用 11|浏览25
暂无评分
摘要
Soil salinity is known to improve cadmium (Cd) mobility, especially in arid soils. However, the mechanisms involved in how salt stress-associated metabolic profiles participate in mediating Cd transport in the soil-plant system remain poorly understood. This study was designed to investigate the effects of salinity-induced changes in soil metabolites on Cd bioavailability. Sodium salts in different combinations according to molar ratio (NaCl:Na2SO4=1:1; NaCl:Na-2 SO4:NaHCO3=1:2:1; NaCl:Na2SO4 :NaHCO3:Na2CO3=1:9:9:1; NaCl:Na2SO4 :NaHCO3:Na2CO3=1:1:1:1) were applied to the Cd-contaminated soils, which increased soil Cd availability by 22.36% and the Cd content in wheat grains by 36.61%, compared to the control. Salt stress resulted in soil metabolic reprogramming, which might explain the decreased growth of wheat plants and increased Cd transport from the soil into wheat tissues. For example, down-regulation of starch and sucrose metabolism reduced the production of sugars, which adversely affected growth; up-regulation of fatty acid metabolism allowed wheat plants to maintain a normal intracellular environment under saline conditions; up-regulation of the tricarboxylic acid (TCA) cycle was triggered, causing an increase in organic acid synthesis and the accumulation of organic acids, which facilitated the migration of soil Cd into wheat tissues. In summary, salt stress can facilitate Cd transport into wheat tissues by the direct effect of salt-based ions and the combined effect of altered soil physicochemical properties and soil metabolic profiles in Cd-contaminated soils. (C) 2022 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
更多
查看译文
关键词
Saline stress,Cadmium availability,Wheat growth,Metabolite profile,Rhizosphere
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要