谷歌浏览器插件
订阅小程序
在清言上使用

Engineering monodispersed 2 nm Sb2S3 particles embedded in a porphyrin-based MOF-derived mesoporous carbon network via an adsorption method to construct a high-performance sodium-ion battery anode

DALTON TRANSACTIONS(2022)

引用 6|浏览26
暂无评分
摘要
Sodium ion batteries (SIBs) are expected to replace lithium ion batteries (LIBs) as the next generation of large-scale energy storage applications because of their superior cost performance. However, the larger ionic radius of Na+ causes a remarkable volume expansion than that of Li+ during charge and discharge, which reduces the performance of the battery. In this work, we engineered a composite material in that monodispersed 2 nm Sb2S3 particles are uniformly loaded into a carbon matrix (Sb2S3/CZM), which is obtained by carbonization of a zirconium-based MOF with adsorption of Sb. The obtained composite material has a high specific surface area in favor of mass transfer, and the porous structure can resist many volume changes in the circulation process. Moreover, the ultrafine Sb2S3 particles are well-distributed in the composite material, which increases the utilization of the active substance and is promising for the storage of Na+. Based on its unique structure, the Sb2S3/CZM composite shows a specific capacity of 550 mA h g(-1) at 100 mA g(-1) and an excellent cycling stability of 88.9% retention after 1000 cycles at 3 A g(-1). The excellent electrochemical performance provides enlightenment for the rational design of hierarchical heterostructures for energy storage applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要