Heat and mitochondrial bioenergetics

Current Opinion in Physiology(2022)

引用 1|浏览7
暂无评分
摘要
Recurrent heat treatment (HT) is known to improve mitochondrial respiratory function and reduce mitochondrial reactive oxygen species (mROS) production over time. Counterintuitively, HT results in acute mitochondrial stress characterized by impaired mitochondrial respiratory function and increased mROS production. The combination of reduced adenosine triphosphate (ATP) synthesis and elevated mROS production leads to the activation of the adenosine monophosphate (AMP)-activated protein kinase, nuclear factor erythroid-2-related factor 2, proliferator-activated receptor gamma coactivator 1-alpha, and nuclear respiratory factor-1 signaling cascades, as well as the heat-shock response via activation of heat-shock factor 1. The coordinated transcriptional control of these proteins leads to the chronological induction of mitochondrial quality-control mechanisms, such as mitophagy and chaperone-mediated autophagy, and mitochondrial biogenesis/remodeling. Taken together, the acute stress imposed by HT leads to positive adaptations in mitochondrial health and function over time - making HT an attractive, nonpharmacologic treatment option for conditions characterized by mitochondrial dysfunction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要