Atomistic Modeling of the Electrical Conductivity of Single-Walled Carbon Nanotube Junctions

PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS(2022)

引用 0|浏览6
暂无评分
摘要
Carbon nanotubes (CNTs) have many interesting properties that make them a focus of research in a wide range of technological applications. In CNT films, the bottleneck in charge transport is typically attributed to higher resistance at CNT junctions, leading to electrical transport characteristics that are quite different from individual CNTs. Previous simulations confirm this; however, a systematic study of transport across junctions is still lacking in the literature. Herein, density functional tight binding (DFTB) theory combined with the nonequilibrium Green's functions (NEGF) method is used to systematically calculate current across a range of CNT junctions. A random sampling approach is used to sample an extensive library of junction structures. The results demonstrate that the conductivity of CNT contacts depends on the overlap area between nanotubes and exponentially on the distances between the carbon atoms of the interacting CNTs. Two models based solely on the atomic positions of carbon atoms within the nanotubes are developed and evaluated: a simple equation using only the smallest C-C separation and a more sophisticated model using the positions of all C atoms. These junction current models can be used to predict transport in larger-scale simulations where the CNT fabric structure is known.
更多
查看译文
关键词
amorphous fabrics, carbon nanotubes, electron transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要