Blood flow modeling reveals improved collateral artery performance during the regenerative period in mammalian hearts

Nature Cardiovascular Research(2022)

引用 8|浏览17
暂无评分
摘要
Collateral arteries bridge opposing artery branches, forming a natural bypass that can deliver blood flow downstream of an occlusion. Inducing coronary collateral arteries could treat cardiac ischemia, but more knowledge on their developmental mechanisms and functional capabilities is required. Here we used whole-organ imaging and three-dimensional computational fluid dynamics modeling to define spatial architecture and predict blood flow through collaterals in neonate and adult mouse hearts. Neonate collaterals were more numerous, larger in diameter and more effective at restoring blood flow. Decreased blood flow restoration in adults arose because during postnatal growth coronary arteries expanded by adding branches rather than increasing diameters, altering pressure distributions. In humans, adult hearts with total coronary occlusions averaged 2 large collaterals, with predicted moderate function, while normal fetal hearts showed over 40 collaterals, likely too small to be functionally relevant. Thus, we quantify the functional impact of collateral arteries during heart regeneration and repair—a critical step toward realizing their therapeutic potential.
更多
查看译文
关键词
collateral artery performance,hearts,regenerative period,flow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要