Glucose derived carbon nanosphere (CSP) conjugated TTK21, an activator of the histone acetyltransferases CBP/p300, ameliorates amyloid‐beta 1–42 induced deficits in plasticity and associativity in hippocampal CA1 pyramidal neurons

Aging Cell(2022)

引用 4|浏览7
暂无评分
摘要
The master epigenetic regulator lysine acetyltransferase (KAT) p300/CBP plays a pivotal role in neuroplasticity and cognitive functions. Recent evidence has shown that in several neurodegenerative diseases, including Alzheimer's disease (AD), the expression level and function of p300/CBP are severely compromised, leading to altered gene expression causing pathological conditions. Here, we show that p300/CBP activation by a small-molecule TTK21, conjugated to carbon nanosphere (CSP) ameliorates A beta-impaired long-term potentiation (LTP) induced by high-frequency stimulation, theta burst stimulation, and synaptic tagging/capture (STC). This functional rescue was correlated with CSP-TTK21-induced changes in transcription and translation. Mechanistically, we observed that the expression of a large number of synaptic plasticity- and memory-related genes was rescued, presumably by the restoration of p300/CBP mediated acetylation. Collectively, these results suggest that small-molecule activators of p300/CBP could be a potential therapeutic molecule for neurodegenerative diseases like AD.
更多
查看译文
关键词
CREB-binding protein, long-term potentiation, synaptic tagging, synaptic tagging, capture, TTK21
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要