Oscillatory Population-Level Activity of Dorsal Raphe Serotonergic Neurons Is Inscribed in Sleep Structure

JOURNAL OF NEUROSCIENCE(2022)

引用 5|浏览5
暂无评分
摘要
Dorsal raphe (DR) 5-HT neurons regulate sleep-wake transitions. Previous studies demonstrated that single-unit activity of DR 5-HT neurons is high during wakefulness, decreases during non-rapid eye movement (NREM) sleep, and ceases during rapid eye movement (REM) sleep. However, characteristics of the population-level activity of DR 5-HT neurons, which influ-ence the entire brain, are largely unknown. Here, we measured population activities of 5-HT neurons in the male and female mouse DR across the sleep-wake cycle by ratiometric fiber photometry. We found a slow oscillatory activity of compound in-tracellular Ca21 signals during NREM sleep. The trough of the concave 5-HT activity increased across sleep progression, but 5-HT activity always returned to that seen during the wake period. When the trough reached a minimum and remained there, REM sleep was initiated. We also found a unique coupling of the oscillatory 5-HT activity and wideband EEG power fluctuation. Furthermore, optogenetic activation of 5-HT neurons during NREM sleep triggered a high EMG power and induced wakefulness, demonstrating a causal role of 5-HT neuron activation. Optogenetic inhibition induced REM sleep or sustained NREM, with an EEG power increase and EEG fluctuation, and pharmacological silencing of 5-HT activity using a selective serotonin reuptake inhibitor led to sustained NREM, with an EEG power decrease and EEG fluctuation. These inhib-itory manipulations supported the association between oscillatory 5-HT activity and EEG fluctuation. We propose that NREM sleep is not a monotonous state, but rather it contains dynamic changes that coincide with the oscillatory population-level ac-tivity of DR 5-HT neurons.
更多
查看译文
关键词
dorsal raphe,optogenetics,photometry,population activity,serotonin,sleep
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要