Exceptional Capacitance Enhancement Of A Non-Conducting Cof Through Potential-Driven Chemical Modulation By Redox Electrolyte

ADVANCED ENERGY MATERIALS(2021)

引用 27|浏览8
暂无评分
摘要
Capacitors are the most practical high-storage and rapid charge-release devices. The number of ions stored per unit area and their interaction strength with the electrode dictates capacitor-performance. Microporous materials provide a high storage surface and optimal interactions. Adsorbing electron-rich and easily polarizable molecules into microporous electrodes is expected to boost Faradaic pseudo-activity. If such electrode-electrolyte interactions can be made as a potential-driven reversible process, the resulting capacitors would be adaptable and device-friendly. A composite covalent organic framework (COF)-carbon electrode with redox-active KI is combined in an H2SO4 electrolyte for the first time. This composite electrode benefits from the redox-functionality of COF and electronic conductivity of carbon, leading to superior capacitative activity. Operando spectro-electrochemical measurements reveal the existence of multiple polyiodide species, although the I-3(-) is the predominantly electroactive species adsorbing on the microporous triazine-phenol COF electrode. A systematic fabrication of the flexible solid-state devices using the COF-redox-electrolyte reveals a high areal capacitance of 270 +/- 11 mF cm(-2) and gravimetric capacitance of 57 +/- 8 F g(-1). The inclusion of KI in H2SO4 (electrolyte) yields an approximately eight-fold enhancement in solid-state gravimetric specific capacitance. The imine-COF retains 89% of its capacity even after 10 000 cycles.
更多
查看译文
关键词
covalent organic frameworks, polyiodide, redox electrolytes, solid&#8208, state capacitors, supercapacitors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要