Peptidoglycan-Mediated Bone Marrow Autonomic Neuropathy Impairs Hematopoietic Stem/Progenitor Cells via a NOD1-Dependent Pathway in db/db Mice

STEM CELLS INTERNATIONAL(2022)

引用 2|浏览1
暂无评分
摘要
Impairment of bone marrow-derived hematopoietic stem/progenitor cells (HSPCs) contributes to the progression of vascular complications in subjects with diabetes. Very small amounts of bacterial-derived pathogen-associated molecular patterns (PAMPs) establish the bone marrow cell pool. We hypothesize that alteration of the PAMP peptidoglycan (PGN) exacerbates HSPC dysfunction in diabetes. We observed increased PGN infiltration in the bone marrow of diabetic mice. Exogenous administration of PGN selectively reduced the number of long-term repopulating hematopoietic stem cells (LT-HSCs), accompanied by impaired vasoreparative functions in db/db mouse bone marrow. We further revealed that bone marrow denervation contributed to PGN-associated HSPC dysfunction. Inhibition of NOD1 ameliorated PGN-induced bone marrow autonomic neuropathy, which significantly rejuvenated the HSPC pools and functions in vivo. These data reveal for the first time that PGN, as a critical factor on the gut-bone marrow axis, promotes bone marrow denervation and HSPC modulation in the context of diabetes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要