Restrictions of nitric oxide electrocatalytic decomposition over perovskite cathode in presence of oxygen: Oxygen surface exchange and diffusion.

Journal of colloid and interface science(2022)

引用 1|浏览2
暂无评分
摘要
Nitric oxide (NO) abatement from engine exhaust is of great significance to alleviate air pollution and haze. Compared with the traditional selective catalytic reduction (SCR) technology, electrocatalytic decomposition of NO simplifies the reductant supply system and therefore avoids secondary pollution. In this study, typical perovskite La0.6Sr0.4CoxFe1-xO3-δ (LSCF) infiltrated by different dosages of nano ceria Ce0.9Gd0.1O1.9 (GDC) was used as composite cathodes, in order to explore the critical factors to restrain NO conversion in excess of O2. The results show that electron as reactive species transfers among NO, ABO3-type cathode and oxygen vacancy. The maximum of NO removal efficiency can reach 96.27 % in absence of O2 and up to 80.55 % in presence of 1% O2 in case of LSCF infiltrated by moderate dosages LSCF-GDC(2), which is superior to those of LSCF, LSCF-GDC(4) and LSM-GDC(nano) composite cathode. Compared to oxygen storage capacity (OSC) caused by the infiltration of nano ceria, higher surface oxygen exchange coefficient (kδ) and chemical diffusion coefficient (Dchem) lead to the significant decrease in polarization resistance (Rp), and consequently to the enhancement of NO removal in presence of O2. No matter what kind of oxygen deriving from oxygen reduction reaction (ORR) and NO reduction reaction (NORR), GDC infiltration into LSCF improves oxygen transport property and however, the property of cathode in ORR is dominant over in NORR in presence of O2. Moderate GDC loading has the highest oxygen transport kinetics, and oxygen surface exchange is faster than chemical diffusion, due to lower activation energy. Over loading of GDC with greater ohmic resistance (Rs) inversely influences the NO removal.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要