Isoform function prediction by Gene Ontology embedding

BIOINFORMATICS(2022)

引用 4|浏览20
暂无评分
摘要
Motivation: High-resolution annotation of gene functions is a central task in functional genomics. Multiple proteoforms translated from alternatively spliced isoforms from a single gene are actual function performers and greatly increase the functional diversity. The specific functions of different isoforms can decipher the molecular basis of various complex diseases at a finer granularity. Multi-instance learning (MIL)-based solutions have been developed to distribute gene(bag)-level Gene Ontology (GO) annotations to isoforms(instances), but they simply presume that a particular annotation of the gene is responsible by only one isoform, neglect the hierarchical structures and semantics of massive GO terms (labels), or can only handle dozens of terms. Results: We propose an efficacy approach IsofunGO to differentiate massive functions of isoforms by GO embedding. Particularly, IsofunGO first introduces an attributed hierarchical network to model massive GO terms, and a GO network embedding strategy to learn compact representations of GO terms and project GO annotations of genes into compressed ones, this strategy not only explores and preserves hierarchy between GO terms but also greatly reduces the prediction load. Next, it develops an attention-based MIL network to fuse genomics and transcriptomics data of isoforms and predict isoform functions by referring to compressed annotations. Extensive experiments on benchmark datasets demonstrate the efficacy of IsofunGO. Both the GO embedding and attention mechanism can boost the performance and interpretability.
更多
查看译文
关键词
gene ontology,isoform,prediction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要