Temperature-dependent compatibility study on halide solid-state electrolytes in solid-state batteries

FRONTIERS IN CHEMISTRY(2022)

引用 0|浏览3
暂无评分
摘要
All-solid-state lithium batteries (ASSLBs) have attracted much attention owing to their high safety and energy density compared to conventional organic electrolytes. However, the interfaces between solid-state electrolytes and electrodes retain some knotty problems regarding compatibility. Among the various SSEs investigated in recent years, halide SSEs exhibit relatively good interfacial compatibility. The temperature-dependent interfacial compatibility of halide SSEs in solid-state batteries is investigated by thermal analysis using simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC) and X-ray diffraction (XRD). Halide SSEs, including rock-salt-type Li3InCl6 and anti-perovskite-type Li2OHCl, show good thermal stability with oxides LiCoO2, LiMn2O4, and Li4Ti5O12 up to 320 degrees C. Moreover, anti-perovskite-type Li2OHCl shows a chemical reactivity with other battery materials (eg., LiFePO4, LiNi0.8Co0.1Mn0.1O2, Si-C, and Li1.3Al0.3Ti1.7(PO4)(3)) at 320 degrees C, which reaches the melting point of Li2OHCl. It indicated that Li2OHCl has relatively high chemical reactivity after melting. In contrast, rock-salt-type Li3InCl6 shows higher stability and interfacial compatibility. This work delivers insights into the selection of suitable battery materials with good compatibility for ASSLBs.
更多
查看译文
关键词
interfacial compatibility, thermal stability, solid-state electrolyte, halide, rock-salt, anti-perovskite, solid-state battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要