谷歌浏览器插件
订阅小程序
在清言上使用

Combined Corner-Sharing and Edge-Sharing Networks in Hybrid Nanocomposite with Unusual Lattice-Oxygen Activation for Efficient Water Oxidation

Advanced Functional Materials(2022)

引用 18|浏览25
暂无评分
摘要
Corner-sharing and edge-sharing networks are the two most important material genomes. Inspired by the efficient electron transport capacity of corner-sharing structures and the low steric hindrance of edge-sharing units, an attempt is made to exert both merits by combining these two networks. Here, a unique self-assembled hybrid SrCo0.55Fe0.5O3-delta nanorod composed of a corner-sharing SrCo0.5Fe0.5O3-delta phase and edge-sharing Co3O4 structure is synthesized through a Co-site enrichment method, which exhibits the low overpotentials of 310 and 290 mV at 10 mA cm(-2) for oxygen-evolving reaction in 0.1 m and 1.0 m KOH, respectively. This efficiency is attributed to the high Co valence with strong Co-O covalence and the short distance between Co-Co/Fe metal active sites in hybrid nanorods, realizing a synergistic benefit. Combined multiple operando/ex situ characterizations and computational studies show that the edge-sharing units in hybrid nanorods can help facilitate the deprotonation step of lattice oxygen mechanism (LOM) while the corner-sharing motifs can accelerate the electron transport during LOM processes, triggering an unusual lattice-oxygen activation. This methodology of combining important material structural genomes can offer meaningful insights and guidance for various catalytic applications.
更多
查看译文
关键词
corner-sharing networks,edge-sharing networks,hybrid nanocomposite,synergistic benefits,unusual lattice-oxygen mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要