Hydrothermal carbons/ferrihydrite heterogeneous Fenton catalysts with low H2O2 consumption and the effect of graphitization degrees

Chemosphere(2022)

引用 0|浏览0
暂无评分
摘要
As the heterogeneous Fenton reactions are always restricted by the unsatisfied reduction efficiency of Fe(III) and ineffective consumption of H2O2, many strategies have been developed. In this work, we prepared hydrothermal carbons (HTC) with different graphitization degrees using glucose under different hydrothermal times, and then they were combined with ferrihydrite (Fh). Interestingly, although 30%HTC/Fh has much better BPA degradation efficiency than Fh (26 times larger of calculated degradation rate constants), the decomposition rate of H2O2 in the former system is lower. The generated Fe(II) of HTC/Fh is much higher than that of Fh during the heterogeneous Fenton reactions, and the degradation of BPA is almost unaffected by p-benzoquinone (scavenger of superoxide radicals (O2•−)) while greatly inhibited by isopropanol (scavenger of hydroxyl radicals (HO•)). These results indicate that HTC act as electron donors due to the abundant carbon-centered persistent free radicals (PFRs) to directly reduce Fe(III) to Fe(II) and therefore decrease the H2O2 consumption by Fe(III), which subsequently inhibits the generation of less active O2•− and promote the utilization efficiency of H2O2. HTC with a low graphitization degree contain more PFRs for Fe(III) reducing, significantly enhancing the Fenton catalytic activity of Fh.
更多
查看译文
关键词
Hydrothermal carbons,Ferrihydrite,Graphitization degree,H2O2 consumption,Fe(III)/Fe(II) redox cycling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要