Science goals of the Earth 2.0 space mission

Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave(2022)

引用 0|浏览21
暂无评分
摘要
An innovative Chinese space mission, the Earth 2.0 (ET) mission, is being developed to combine the transit and microlensing method together to search for Earth-sized exoplanets in the Galaxy, including the most precious ones-Earth 2.0s, i.e., habitable Earth-sized (0.8-1.25 Earth radii) planets orbiting solar type stars, cold and free-floating low-mass planets. ET's 6 transit telescopes will monitor a FoV of 500 square degrees (covering the Kepler field) continuously for at least four years and generate a huge database containing high-cadence and ultra-high photometry precision light curves of 1.2 million FGKM dwarfs. With such a high value database in hand, many unsolved issues in the exoplanet field and even stellar sciences will be well addressed. Besides looking for Earth 2.0s and constraining its occurrence rate, ET will be dedicated to map a much wider radius-period diagram of terrestrial-like exoplanets than ever and reveal how it depends on the stellar properties and environments. With the 4-yr legacy data of Kepler, ET will observe some planet systems for up to 8 years and catch additional components in a multi-planet system, e.g. cold Giant, cold sub-Earths, exomoons, exorings and even exocomets. Are exomoons and exocomets common in a planet system? What's the favorite number of planets in a multi-planet system? What's the most common orbital configuration of planet systems? With these new data, ET will deepen our understandings on how unique our Solar system is and how do multi-planet systems evolve. In addition to exoplanet sciences, ET's time series data will also benefit the studies in asteroseismology, archeology in the Galaxy, time-domain astrophysics and black hole science.
更多
查看译文
关键词
ET,Earth 2.0,terrestrial planet,habitable planet,free-floating planet,time-domain,black-hole,binary stars
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要