An Experimental 1-km Warn-on-Forecast System for Hazardous Weather Events

Monthly Weather Review(2022)

引用 0|浏览10
暂无评分
摘要
Abstract An experimental Warn-on-Forecast (WoF) ensemble data assimilation (DA) and prediction system at 1-km grid spacing is developed and tested using two landfalling tropical cyclone (TC) events, one springtime severe thunderstorm event, and one summertime flash flood event. To evaluate the impact of DA at 1-km grid spacing, two experiments are conducted. One experiment, namely the WoFS-1km, generates 3-h ensemble forecasts from the 1-km WoFS analyses while another experiment, namely the Downscaled-1km, generates 3-h ensemble forecasts from downscaled 3-km analyses. With 1-km DA, the two landfalling TC events and the summertime event show some improvement in predicting high reflectivity, while the springtime event performs worse. Meanwhile, WoFS-1km is slightly better at predicting heavier precipitation (>20 mm h−1) with lower bias. However, heavy precipitation spatial placement error is only mitigated in one TC event and the summertime event with 1-km DA but is neutral or worse in the other two events. Object-based verification for rotation objects indicates that WoFS-1km performs better in one of the TC events, but worse in the springtime event with lower probability of detection and higher false alarm ratio due to fewer strong rotation objects being generated. The forecast skill of WoFS-1km for the springtime event is degraded mainly because the convective cores do not sufficiently develop as the forecast advances. The conditional benefits from 1-km DA in this study highlights the need for evaluation of a larger sample of convective storm cases and further development of the system.
更多
查看译文
关键词
Ensembles,Numerical weather prediction,forecasting,Data assimilation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要