Effects Of Natural Non-Volcanic Co2 Leakage on Soil Microbial Community Composition and Diversity

SSRN Electronic Journal(2022)

引用 3|浏览2
暂无评分
摘要
Geological carbon capture and storage (CCS) can reduce anthropogenic CO2 emissions, but questions exist about impacts at the surface if CO2 leaks from deep storage reservoirs. To examine potential impacts on soils, previous studies have investi-gated the geochemistry and microbiology of volcanic soils hosting high fluxes of CO2 rich gas. This study builds on those previous investigations by considering impacts of CO2 leakage at a non-volcanic site, where deep geogenic CO2 leaks from a cracked well casing. At the site, we collected 26 soil cores adjacent to soil gas monitoring wells. Based on measured CO2 fluxes, the soil samples fall into two groups 1) high CO2 (flux = 304.6 +/- 272.1 g m-2 d-1, conc. = 29.1 +/- 34 %) and 2) low CO2 (flux = 15.8 +/- 6.1 g m-2 d-1, conc. = 0.8 +/- 0.9 %). Soil pH was significantly lower (p < 0.05) in high flux group samples (4.6 +/- 0.3) than the low flux ones (5.3 +/- 0.7). Beta diversity calculations using 16S rRNA gene sequences and redundancy analysis (RDA) revealed clear clustering of microbial communities relative to CO2 flux and significant cor-relations of community composition with pH and organic carbon content. In the high flux soils, abundant microbial groups included Acidobacteriota, Ktedonobacteria, and SC-I-84 in the phylum Proteobacteria, as well as Nitrososphaeria, a genus of am-monia oxidizing archaea. Compared to volcanic sites described previously, our non-volcanic site had slight differences in soil geochemical properties and gradual shifts in community compositions between CO2 hotspots and background loca-tions. Moreover, the elevated abundance of SC-I-84 has not been reported in studies of volcanic sites. This study improves our ability to predict potential environmental impacts of geological CCS by expanding the range of conditions over which existing CO2 leakage has been observed.
更多
查看译文
关键词
Soil bacteria and archaea,Soil organic matter,Geogenic carbon dioxide,Stable carbon isotope,Redundancy analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要