A process‐model perspective on recent changes in the carbon cycle of North America

Journal of Geophysical Research: Biogeosciences(2022)

引用 2|浏览37
暂无评分
摘要
Continental North America has been found to be a carbon (C) sink over recent decades by multiple studies employing a variety of estimation approaches. However, several key questions and uncertainties remain with these assessments. Here we used results from an ensemble of 19 state-of-the-art dynamic global vegetation models from the TRENDYv9 project to improve these estimates and study the drivers of its interannual variability. Our results show that North America has been a C sink with a magnitude of 0.37 +/- 0.38 (mean and one standard deviation) PgC year(-1) for the period 2000-2019 (0.31 and 0.44 PgC year(-1) in each decade); split into 0.18 +/- 0.12 PgC year(-1) in Canada (0.15 and 0.20), 0.16 +/- 0.17 in the United States (0.14 and 0.17), 0.02 +/- 0.05 PgC year(-1) in Mexico (0.02 and 0.02) and 0.01 +/- 0.02 in Central America and the Caribbean (0.01 and 0.01). About 57% of the new C assimilated by terrestrial ecosystems is allocated into vegetation, 30% into soils, and 13% into litter. Losses of C due to fire account for 41% of the interannual variability of the mean net biome productivity for all North America in the model ensemble. Finally, we show that drought years (e.g., 2002) have the potential to shift the region to a small net C source in the simulations (-0.02 +/- 0.46 PgC year(-1)). Our results highlight the importance of identifying the major drivers of the interannual variability of the continental-scale land C cycle along with the spatial distribution of local sink-source dynamics.
更多
查看译文
关键词
carbon cycle,north america
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要