Cross Entropy Benchmark for Measurement-Induced Phase Transitions

Physical Review Letters(2022)

引用 6|浏览17
暂无评分
摘要
We investigate the prospects of employing the linear cross-entropy to experimentally access measurement-induced phase transitions (MIPT) without requiring any postselection of quantum trajectories. For two random circuits that are identical in the bulk but with different initial states, the linear cross-entropy $\chi$ between the bulk measurement outcome distributions in the two circuits acts as a boundary order parameter, and can be used to distinguish the volume law from area law phases. In the volume law phase (and in the thermodynamic limit) the bulk measurements cannot distinguish between the two different initial states, and $\chi = 1$. In the area law phase $\chi < 1$. For circuits with Clifford gates, we provide numerical evidence that $\chi$ can be sampled to accuracy $\epsilon$ from $O(1/\epsilon^2)$ trajectories, by running the first circuit on a quantum simulator without postselection, aided by a classical simulation of the second. We also find that for weak depolarizing noise the signature of the MIPT is still present for intermediate system sizes. In our protocol we have the freedom of choosing initial states such that the "classical" side can be simulated efficiently, while simulating the "quantum" side is still classically hard.
更多
查看译文
关键词
phase transitions,benchmark,measurement-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要