Dynamic neural reconfiguration for distinct strategies during competitive social interactions.

NeuroImage(2022)

引用 0|浏览28
暂无评分
摘要
Information exchange between brain regions is key to understanding information processing for social decision-making, but most analyses ignore its dynamic nature. New insights on this dynamic might help us to uncover the neural correlates of social cognition in the healthy population and also to understand the malfunctioning neural computations underlying dysfunctional social behavior in patients with mental disorders. In this work, we used a multi-round bargaining game to detect switches between distinct bargaining strategies in a cohort of 76 healthy participants. These switches were uncovered by dynamic behavioral modeling using the hidden Markov model. Proposing a novel model of dynamic effective connectivity to estimate the information flow between key brain regions, we found a stronger interaction between the right temporoparietal junction (rTPJ) and the right dorsolateral prefrontal cortex (rDLPFC) for the strategic deception compared with the social heuristic strategies. The level of deception was associated with the information flow from the Brodmann area 10 to the rTPJ, and this association was modulated by the rTPJ-to-rDLPFC information flow. These findings suggest that dynamic bargaining strategy is supported by dynamic reconfiguration of the rDLPFC-and-rTPJ interaction during competitive social interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要